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Abstract
This paper is about non-approximate acceleration of high dimensional
non-parametric operations such as k-nearest neighbor classifiers and the
prediction phase of Support Vector Machine classifiers. We attempt to
exploit the fact that even if we want exact answers to non-parametric
queries, we usually do not need to explicitly find the datapoints close to
the query, but merely need to ask questions about the properties about
that set of datapoints. This offers a small amount of computational lee-
way, and we investigate how much that leeway can be exploited. For
clarity, this paper concentrates on pure KNN-classification and the pre-
diction phase of SVMs. We introduce new ball tree algorithms that on
real-world datasets give accelerations of 2-fold up to 100-fold compared
against highly optimized traditional ball-tree-based KNN. These results
include datasets with up to 106 dimensions and 105 records, and show
non-trivial speedups while giving exact answers.

1 Introduction
Non-parametric models have become increasingly popular in the statistics communities
and probabilistic AI communities. They remain hampered by their computational com-
plexity. Spatial methods such as kd-trees [6, 18], R-trees [9], metric trees [19, 4] and ball
trees [15] have been proposed and tested as a way of alleviating the computational cost of
such statistics without resorting to approximate answers. They have been used in many
different ways, and with a variety of tree search algorithms and with a variety of “cached
sufficient statistics” decorating the internal leaves, for example in [14, 5, 20, 16, 8].

The main concern with such accelerations is the extent to which they can survive high di-
mensional data. Indeed, there are some datasets in this paper for which a highly optimized
conventional k-nearest neighbor search based on ball trees is on average more expensive
than the naive linear search algorithm. This paper is about the consequences of the fact that
none of these three questions have the same precise meaning: (a) “What are the k-nearest-
neighbors of t?” (b) “How many of the k-nearest-neighbors of t are from the positive
class?” and (c) “Are more than q of the k-nearest-neighbors from the positive class?” The
computational geometry community has focused on question (a), but uses of proximity
queries in statistics far more frequently require (b) and (c) types of computations. Further,
in addition to traditional KNN, the same insight applies to many other statistical compu-
tations such as non-parametric density estimation, locally weighted regression, mixture
models, k-means and the prediction phase of SVM classification.



2 Ball trees
A ball tree is a binary tree in which each node represents a set of points, called
Points(Node). Given a dataset, the root node of a ball tree represents the full set of points
in the dataset. A node can be either a leaf node or a non-leaf node. A leaf node explicitly
contains a list of the points represented by the node. A non-leaf node does not explicitly
contain a set of points. It has two children nodes: Node.child1 and Node.child2, where

Points child1 Points child2 φ and Points child1 Points child2 Points(Node)

Points are organized spatially. Each node has a distinguished point called a pivot. Depend-
ing on the implementation, the pivot may be one of the datapoints, or it may be the centroid
of Points(Node). Each node records the maximum distance of the points it owns to its pivot.
Call this the Node.Radius maxx Points(Node) Node Pivot x . Balls lower down the
tree cover smaller volumes. This is achieved by insisting, at tree construction time, that

x Points Node child1 x Node child1 Pivot x Node child2 Pivot
x Points Node child2 x Node child2 Pivot x Node child2 Pivot

This gives the ability to bound distance from a target point t to any point in any ball tree
node. If x Points(Node) then we can be sure that:

x t t Node.Pivot Node.Radius (1)
x t t Node.Pivot Node.Radius (2)

Ball trees are constructed top-down. There are several ways to construct them, and practical
algorithms trade off the cost of construction (it would be useless to beO R 2 given a dataset
with R points, for example) against the tightness of the radius of the balls. [13] describes
one fast way of constructing a ball tree appropriate for computational statistics. If a ball
tree is balanced, then the construction time is O CR logR , where C is the cost of a point-
point distance computation (which is O m if there are m dense attributes, and O fm if
the records are sparse with only fraction f of attributes taking non-zero values).

2.1 KNS1: Conventional K-nearest-neighbor with ball trees
In this paper, we call conventional ball-tree-based search [19] KNS1. Let a pointset PS be
a set of datapoints. We begin with the following definition:

Say that PS consists of the KNN of t in pointset V if and only if

V k and PS are the KNN of t in V or V k and PS V (3)

We now define a recursive procedure called BallKNN with the following inputs and output.

PSout BallKNN PSin Node

Let V = set of points searched so far, on entry. Assume PS in consists of the KNN of t in V.
We efficiently ensure that on exit, PSout consists of the KNN of t in V Points(Node).
Procedure BallKNN (PSin Node)
begin

LetDsofar
∞ i f PSin k
maxx PSin x t i f PSin k (4)

Dsofar is the minimum distance within which points would become interesting to us.
Let DNodeminp minimum possible distance from any point in Node to t. Computed using the bound in Eq 1.
if (DNodeminp Dsofar) then exit returning PSin unchanged.
else if (Node is a leaf)

PSout PSin
x Points(Node)
if ( x t Dsofar) then



add x to PSout
if ( PSout k 1) then remove furthest neighbor from PSout and update Dsofar

else if (Node is a non-leaf)
node1 = child of Node closest to t
node2 = child of Node furthest from t
PStemp BallKNN PSin node1
PSout BallKNN PStemp node2

end

A call of BallKNN( ,Root) thus returns the k nearest neighbors of t in the Ball tree.

2.2 KNS2: Faster KNN-classification for skewed output data
In real-world binary classification domains, it is often the case that one class is much more
frequent than the other, for a variety of reasons. For example, in High Throughput Screen-
ing [21] it is far more common for the result of an experiment to be negative than positive.
In fraud detection or intrusion detection, a non-attack is far more common than an attack.
The new algorithm introduced in this section, KNS2, is designed to accelerate KNN based
classification beyond the speedups already available by using KNS1 (conventional ball-
tree-based KNN).

KNS2 attacks the problem by building two ball trees: Root pos is the root of a (small) ball
tree built from all the positive points in the dataset. Rootneg is the root of a (large) ball tree
built from all negative points.

Then, when it is time to classify a new target point t, we compute q, the number of k nearest
neighbors of t that are in the positive class, in the following fashion

Step 1. Find the k nearest positive class neighbors of t (and their distances to t)
using conventional ball tree search.
Step 2. Do sufficient search of the negative tree to prove that the number of posi-
tive datapoints among k nearest neighbors is q for some value of q.

Step 2 is achieved using a new recursive search called NegCount. In order to describe
NegCount we need the following three definitions.

The Dists Array. Dists is an array of elements Dists1 Distsk consisting of the
distances to the k nearest positive neighbors of t, sorted in increasing order of
distance. For notational convenience we will also write Dists0 0 and Distsk+1
∞.
Pointsets. Define pointsetV as the set of points in the negative balls visited so far
in the search.
The Counts Array (n,C). Say that (n,C) summarize interesting negative points
for pointset V if and only if
1. i 1 n Ci V x : Distsi-1 x q Distsi . This simply declares
that Ci is a count of the number of points in V with distance-to-target lying
between Distsi-1 and Distsi.

2. ∑ni 1Ci k ∑n 1
i 1 Ci k. This simply declares that the length n of the C

array is as short as possible while accounting for the k members ofV that are
nearest to t.

Step 2 of KNS2 is implemented by the recursive function
nout Cout NegCount nin Cin Node Dists

Assume that on entry that nin Cin summarize interesting negative points for pointset V ,
where V is the set of points visited so far during the search. This algorithm efficiently
ensures that on exit nout Cout summarize interesting negative points forV Points(Node).



Procedure NegCount (nin Cin Node Dists)
begin

nout := nin ; Cout := Cin

Let T ∑n
out

i 1C
out
i (total number of -ve points closer than the nout th ve point).

if (DNodeminp Distinnin ) then exit and return nout C
out

else if (Node is a leaf)
x Points(Node)

Use binary search to find j 1 nout , such that Distsj-1 x t Distsj
Coutj := Coutj 1 ; T := T 1
If T exceeds k, decrement nout until T ∑n

out

i 1C
out
i k.

if (nout 1) exit and return nout 1 Cout1 k
else(Node is a non leaf)

node1 := child of Node closest to t
node2 := child of Node furthest from t
(ntemp Ctemp) := NegCount(nin Cin node1 Dists)
if (ntemp = 1) exit and return nout 1 Cout1 k
(nout Cout ) := NegCount(ntemp Ctemp node2 Dists)

end

We can stop the procedure when nout becomes 0 (which means all the k nearest neighbors
of t are in the negative class) or when we run out of nodes. The top-level call is

NegCount k C0 Root Dists (5)

whereC0 is an array of zeroes andDists are defined before and obtained by applying KNS1
to the (small) positive ball tree.

2.3 KNS3: Are more than q nearest neighbors positive?
Unfortunately, space constraints prevent us from describing the details of KNS3. KNS3
removes KNS2’s constraint of an assumed skewedness in the class distribution, while in-
troducing a new constraint: we answer the binary question “are more than q nearest neigh-
bors positive?” (where the questioner must supply q). This is often the most statistically
relevant question, for example during classification with known false positive and false
negative costs. KNS3 will be described fully in a journal-article length version of the pa-
per 1.

2.4 SVP1: Faster Radial Basis SVM Prediction
After an SVM [3] has been trained we hit the prediction phase. Given a batch of query
points q1 q2 qR we wish to classify each q j. Furthermore, in state-of-the-art training
algorithms such as SMO, training time is dominated by SVM evaluation [17]. q j should be
classified according to this rule:

ASUM q j ∑
i posvecs

αiK q j xi BSUM q j ∑
i negvecs

βiK q j xi (6)

Class q j 1 if ASUM q j BSUM q j b
0 if ASUM q j BSUM q j b

Where the positive support vectors posvecs, the negative support vectors negvecs and the
weights αi , βi and constant term b are all obtained from SVM training.

We place the queries (not the support vectors) into a ball-tree. We can then apply the same
kinds of trick as KNS2 and KNS3 in which we do not need to find the explicit values of the

1The current draft is at www.cs.cmu.edu/ awm/draft4.ps but will be cited properly as a technical
report in the final version of this paper.



ASUM and BSUM terms, but merely find balls in the tree in which we can prove all query
points satisfy one of the above inequalities.

To classify all the points in a node called Node we do the following:

1. Compute values ASUMLO ASUMHI such that we can be sure

q j Node : ASUMLO ASUM q j ASUMHI (7)

without iterating over the queries in Node. This is achieved simply, for example if
q j Node we know

ASUM q j ∑
i posvecs

αiK q j xi

∑
i posvecs

αiK Node pivot xi Node.Radius

ASUMLO

under the assumption that the kernel function is a decreasing function of distance.
This is true, for example, for Gaussian Radial Basis function kernels.

2. Similarly compute values BSUMLO BSUMHI .
3. If ASUMLO BSUMHI b we have proved that all queries in Node should be
classified positively, and we can terminate this recursive call.

4. If ASUMHI BSUMLO b we have proved that all queries in Node should be
classified negatively, and we can terminate this recursive call.

5. Else we recurse and apply the same procedure to the two children of Node, unless
Node is a leaf node in which case we must explicitly iterate over its members.

3 Experimental Results
Table 1 is a summary of the datasets in the empirical analysis.

Life Sciences: These were proprietary datasets (ds1 and ds2) similar to the publicly avail-
able Open CompoundDatabase provided by the National Cancer Institute (NCI Open Com-
pound Database, 2000). The two datasets are sparse. We also present results on datasets
derived from ds1, denoted ds1.10pca, ds1.100pca and ds2.100anchor by linear projection
using principal component analysis (PCA).

Link Detection: The first, Citeseer, is derived from the Citeseer web site (Citeseer,2002)
and lists the names of collaborators on published materials. The goal is to predict whether
J Lee ( the most common name) was a collaborator for each work based on who else is
listed for that work. We use J Lee.100pca to represent the linear projection of the data to
100 dimensions using PCA. The second link detection dataset is derived from the Internet
Movie Database (IMDB,2002) and is denoted imdb using a similar approach, but to predict
the participation of Mel Blanc (again the most common participant).

UCI/KDD data: We use three large datasets from KDD/UCI repository [2]. The datasets
can be identified from their names. They were converted to binary classification problems.
Each categorical input attribute was converted into n binary attributes by a 1-of-n encoding
(where n is the attribute’s arity).

1. Letter originally had 26 classes: A-Z. We performed binary classification using
the letter A as the positive class and “Not A” as negative.

2. Ipums (from ipums.la.97). We predict farm status, which is binary.
3. Kdd99(10%) has a binary prediction: Normal vs. Attack.



Table 1: Datasets
Dataset Num. Num. Di- Num.

records mensions positive
ds1 26733 6348 804
ds1.10pca 26733 10 804
ds1.100pca 26733 100 804
ds2 88358 1 1 106 211
ds2.100anchor 88358 100 211
J Lee.100pca 181395 100 299

Dataset Num. Num. Di- Num.
records mensions positive

Blanc Mel 186414 10 824
Movie 38943 62 7620
Letter 20000 16 790
Ipums 70187 60 119
Kdd99(10%) 494021 176 97278

For each dataset, we tested k 9 and k 101. For KNS3, we used q k/2 : a datapoint
is classified as positive iff the majority of its k nearest neighbors are positive.

Each experiment performed 10-fold cross-validation. Thus, each experiment required R
KNN classification queries (where R is the number of records in the dataset) and each
query involved the KNN among 0 9R records. A naive implementation with no ball-trees
would thus require 0 9R2 distance computations.

These algorithms are all exact. No approximations were used in the classifications.

Table 2 shows the computational cost of naive KNN, both in terms of the number of dis-
tance computations and the wall-clock time on an unloaded 2 GHz Pentium. We then
examine the speedups of KNS1 (traditional use of Ball-trees) and our two new Ball-tree
methods (KNS2 and KNS3). It is notable that for some high dimensional datasets, KNS1
does not produce an acceleration over naive. KNS2 and KNS3 do, however, and in some
cases they are hundreds of times faster than KNS1.

The ds2 result is particularly interesting because it involves data in over a million dimen-
sions. The first thing to notice is that conventional ball-trees (KNS1) were slightly worse
than the naive O R2 algorithm. In only one case was KNS2 inferior to naive and KNS3
was always superior. On some datasets KNS2 and KNS3 gave dramatic speedups.

Table 3 gives results for SVP1, the Ball-tree-based accelerator for SVM prediction 2 In gen-
eral SVP1 appears to be 2-4 times faster than SVM-Light [11] with two far more dramatic
speedups in the case of two classification tasks where SVP1 quickly realizes that a large
node near the top of its query tree can be pruned as negative. As with previous results,
SVP1 is exact, and all predictions agree with SVM-Light. All these experiments used
Radial Basis kernels, with kernel width tuned for optimal test-set performance.

4 Comments and related work
Applicability of other proximity query work. For the problem of “find the k-nearest dat-
apoints” (as opposed to our question of “perform KNN or Kernel classification”) in high
dimensions, the frequent failure of traditional ball-trees to beat naive has lead to some very
ingenious and innovative alternatives, based on random projections, hashing discretized
cubes, and acceptance of approximate answers. For example [7] gives a hashing method
that was demonstrated to provide speedups over a ball-tree-based approach in 64 dimen-
sions by a factor of 2-5 depending on how much error in the approximate answer was
permitted. Another approximate KNN idea is in [1], one of the first KNN approaches to
use a priority queue of nodes, in this case achieving a 3-fold speedupwith an approximation
to the true KNN. However, these approaches are based on the notion that any points falling
within a factor of 1 ε times the true nearest neighbor distance are acceptable substitutes
for the true nearest neighbor. Noting in particular that distances in high-dimensional spaces
tend to occupy a decreasing range of continuous values [10], it remains an open question
whether schemes based upon the absolute values of the distances rather than their ranks are

2Because training SVMs is so expensive, some of the results below used reduced training sets.



Table 2: Number of distance computations and wall-clock-time for Naive KNN classifica-
tion (2nd column). Acceleration for normal use of ball-trees in col, 2 (in terms of num.
distances and time). Accelerations of new methods KNS2 and KNS3 in other columns.
Naive times are independent of k.

NAIVE KNS1 KNS2 KNS3
dists time dists time dists time dists time

(secs) speedup speedup speedup speedup speedup speedup
ds1 k=9 6 4 108 4930 1.6 1.0 4.7 3.0 10.5 3.8

k=101 1.0 0.7 1.6 1.1 8.3 2.7
ds1.10pca k=9 6 4 108 450 11.8 11.0 33.6 21.4 61.5 21.4

k=101 4.6 3.4 6.5 4.0 31 5.6
ds1.100pcak=9 6 4 108 2560 1.7 1.8 7.6 7.4 14.6 7.9

k=101 0.97 1.0 1.6 1.6 8.4 3.7
ds2 k=9 8 5 109 108200 0.64 0.24 14.0 2.8 10.1 2.67

k=101 0.61 0.24 2.4 0.83 7.9 1.2
ds2.100- k=9 7 0 109 24210 15.8 14.3 185.3 144 116 207

k=101 10.9 14.3 23.0 19.4 576 278
J Lee.100- k=9 3 6 1010 142000 2.6 2.4 28.4 27.2 8237.0 8.2

k=101 2.2 1.9 12.6 11.6 8.6 13.9
Blanc Melk=9 3 8 1010 44300 3.0 3.0 47.5 60.8 51.3 39.2

k=101 2.9 3.1 7.1 33 157.2 134.0
Letter k=9 3 6 108 290 8.5 7.1 42.9 26.4 69.2 26.4

k=101 3.5 2.6 9.0 5.7 30.2 5.7
Ipums k=9 4 4 109 9520 195 136 665 501 1148.5 501

k=101 69.1 50.4 144.6 121 7896 7019
Movie k=9 1 4 109 3100 16.1 13.8 29.8 24.8 45.3 20

k=101 9.1 7.7 10.5 8.1 30.6 11.3
Kddcup99 k=9 2 7 1011 1670000 4.2 4.2 574 702 1376.2 1208
(10%) k=101 4.2 4.2 187.7 226.2 598 494

Table 3: Comparison between SVM light and SVP1. We show the total number of distance
computations made during the prediction phase for each method, and total wall-clock time.

SVM light SVP1 SVM light SVP1 speedup
distances distances seconds seconds

ds1 6 4 107 1 8 107 394 171 2.3
ds1.10pca 6 4 107 1 8 107 60 23 2.6
ds1.100pca 6 4 107 2 3 107 259 92 2.8
ds2.100pca 7 0 108 1 4 108 2775 762 3.6
J Lee.100pca 6 4 106 2 106 31 7 4.4
Blanc Mel 1 2 108 3 6 107 61 26 2.3
Letter 2 6 107 1 107 21 11 1.9
Ipums 1 9 108 7 7 104 494 1 494
Movie 1 4 108 4 4 107 371 136 2.7
Kddcup99(10%) 6 3 106 2 8 105 69 1 69

of practical relevance to the classification task. Our approach, because it need not find the
KNN to answer the relevant statistical question, finds an answer without approximation.
The fact that our methods are easily modified to allow 1 ε approximation in the manner
of [1] suggests an obvious avenue for future research.

No free lunch. For uniform high dimensional data no amount of trickery can save us.
The explanation for the promising empirical results is that all the interdependencies in
the data mean we are working in a space of much lower intrinsic dimensionality [12] (note
though, that in experiments not reported here, QSAR and vision KNN classifiers give better
performance on the original data than on PCA-projected low dimensional data, indicating
that some of these dependencies are non-linear).

Summary. This paper has introduced and evaluated two new algorithms for more effec-
tively exploiting spatial data structures during KNN classification in the case of a skewed
output class and in the general case for the SVM prediction phase with Radial Basis Func-
tion kernels. We have shown significant speedups on high dimensional datasets without
resorting to approximate answers or sampling.
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