
Linear-time Algorithms for Pairwise Statistical
Problems

Parikshit Ram
Computational Science and Engineering

Georgia Institute of Technology
Atlanta, GA 30332

p.ram@gatech.edu

Dongryeol Lee
Computational Science and Engineering

Georgia Institute of Technology
Atlanta, GA 30332

dongryel@cc.gatech.edu

William B. March
Computational Science and Engineering

Georgia Institute of Technology
Atlanta, GA 30332

march@gatech.edu

Alexander Gray
Computational Science and Engineering

Georgia Institute of Technology
Atlanta, GA 30332

agray@cc.gatech.edu

Abstract

Several key computational bottlenecks in machine learninginvolve pairwise dis-
tance computations, including all-nearest-neighbors (finding the nearest neigh-
bor(s) for each point, e.g. in manifold learning) and kernelsummations (e.g. in
kernel density estimation or kernel machines). We considerthe general, bichro-
matic case for these problems, in addition to the scientific problem of N-body
simulation. In this paper we show for the first timeO(N) worst case runtimes for
practical algorithms for these problems based on the cover tree data structure [1].

1 Introduction

Pairwise distance computations are fundamental to many important computations in machine learn-
ing and are some of the most expensive for large datasets. In particular, we consider the class of
all-queryproblems, in which the combined interactions of areferencesetℛ of N points inℝD is
computed for each pointq in a querysetQ of sizeO(N). This class of problems includes the pair-
wise kernel summation used in kernel density estimation andkernel machines and the all-nearest
neighbors computation for classification and manifold learning. All-query problems can be solved
directly by scanning over theN reference points for each of theO(N) queries, for a total running
time of O(N2). Since quadratic running times are too slow for even modestly-sized problems,
previous work has sought to reduce the number of distance computations needed.

We consider algorithms that employspace-partitioning treesto improve the running time. In all the
problems considered here, the magnitude of the effect of anyreferencer on a queryq is inversely
proportional to the distanced(q, r). Therefore, the net effect on the query is dominated by refer-
ences that are “close by”. A space-partitioning tree divides the space containing the point set in a
hierarchical fashion, allowing for variable resolution toidentify major contributing points efficiently.

Single-Tree Algorithms. One approach for employing space-partitioning trees is to consider each
query point separately –i.e. to consider the all-query problem as manysingle-queryproblems. This
approach lends itself tosingle-treealgorithms, in which the references are stored in a tree, andthe
tree is traversed once for each query. By considering the distance between the query and a collection
of references stored in a tree node, the effect of the references can be approximated or ignored if the
distances involved are large enough, with appropriate accuracy guarantees for some methods.

1

Thekd-tree structure [2] was developed to obtain the nearest-neighbors of a given query in expected
logarithmic time and has also been used for efficient kernel summations [3, 4]. However, these
methods lack any guarantees on worst-case running time. A hierarchical data structure was also
developed for efficient combined potential calculation in computational physics in Barnes & Hut,
1986 [5]. This data structure provides anO(logN) bound on the potential computation for a single
query, but has no error guarantees. Under their definition ofintrinsic dimension, Karger & Ruhl [6]
describe a randomized algorithm withO(logN) time per query for nearest neighbor search for low-
intrinsic-dimensional data. Krauthgamer & Lee proved their navigating nets algorithm can compute
a single-query nearest-neighbor inO(logN) time under a more robust notion of low intrinsic di-
mensionality. The cover tree data structure [1] improves over these two results by both guaranteeing
a worst-case runtime for nearest-neighbor and providing efficient computation in practice relative to
kd-trees. All of these data structures rely on the triangle inequality of the metric space containing
ℛ in order toprunereferences that have little effect on the query.

Dual-Tree Algorithms. The approach described above can be applied to every single query to im-
prove theO(N2) running time of all-query problems toO(N logN). A faster approach to all-query
problems uses an algorithmic framework inspired by efficient particle simulation [7] and general-
ized to statistical machine learning [8] which takes advantage of spatial proximity in bothQ and
ℛ by constructing a space-partitioning tree on each set. Bothtrees are descended, allowing the
contribution from a distant reference node to be pruned for an entire node of query points. These
dual-tree algorithmshave been shown to be significantly more efficient in practicethan the cor-
responding single-tree algorithms for nearest neighbor search and kernel summations [9, 10, 11].
Though conjectured to haveO(N) growth, they lack rigorous, general runtime bounds.

All-query problems fall into two categories:monochromatic, whereQ = ℛ andbichromatic, where
Q is distinct fromℛ. Most of the existing work has only addressed the monochromatic case. The fast
multipole method (FMM)[7] for particle simulations, considered one of the breakthrough algorithms
of the20th century, has a non-rigorous runtime analysis based on the uniform distribution. Methods
based on the well-separated pair decomposition (WSPD) [12] have been proposed for the all nearest
neighbors problem and particle simulations [13], but are inefficient in practice. These methods have
O(N) runtime bounds for the monochromatic case, but it is not clear how to extend the analysis to
a bichromatic problem. In addition to this difficulty, the WSPD-based particle simulation method
is restricted to the(1/r)-kernel. In Beygelzimer et.al., 2006 [1], the authors conjecture, but do not
prove, that the cover tree data structure using a dual-tree algorithm can compute the monochromatic
all-nearest-neighbors problem inO(N).

Our Contribution. In this paper, we proveO(N) runtime bounds for several important instances
of the dual-tree algorithms for the first time using the covertree data structure [1]. We prove the first
worst-case bounds for any practical kernel summation algorithms. We also provide the first general
runtime proofs for dual-tree algorithms on bichromatic problems. In particular, we give the first
proofs of worst-caseO(N) runtimes for the following all-query problems:

∙ All Nearest-neighbors: For all queriesq ∈ Q, find r∗(q) ∈ ℛ such thatr∗(q) =
argminr∈ℛ d(q, r).

∙ Kernel summations: For a given kernel functionK(⋅), compute the kernel summation
f(q) =

∑

r∈ℛ K(d(q, r)) for all q ∈ Q.
∙ N-body potential calculation: Compute the net electrostatic or gravitational potential
f(q) =

∑

r∈ℛ,r ∕=q d(q, r)
−1 at eachq ∈ Q.

Outline. In the remainder of this paper, we give our linear running time proofs for dual-tree al-
gorithms. In Section 2, we review the cover tree data structure and state the lemmas necessary for
the remainder of the paper. In Section 3, we state the dual-tree all-nearest-neighbors algorithm and
prove that it requiresO(N) time. In Section 4, we state the absolute and relative error guaran-
tees for kernel summations and again prove the linear running time of the proposed algorithms. In
the same section, we apply the kernel summation result to theN -body simulation problem from
computational physics, and we draw some conclusions in Section 5.

2 Cover Trees

A cover tree [1]T stores a data setℛ of sizeN in the form of a levelled tree. The structure has an
O(N) space requirement andO(N logN) construction time. Each level is a “cover” for the level

2

beneath it and is indexed by an integer scalei which decreases as the tree is descended. LetCi

denote the set of nodes at scalei. For all scalesi, the following invariants hold:
∙ (nesting invariant)Ci ⊂ Ci−1

∙ (covering tree invariant) For everyp ∈ Ci−1, there exists aq ∈ Ci satisfyingd(p, q) ≤ 2i,
and exactly one suchq is a parent ofp.
∙ (separation invariant) For allp, q ∈ Ci, d(p, q) > 2i.

Representations. The cover tree has two different representations: Theimplicit representation
consists of infinitely many levelsCi with the levelC∞ containing a single node which is the root
and the levelC−∞ containing every point in the dataset as a node. Theexplicit representationis
required to store the tree inO(N) space. It coalesces all nodes in the tree for which the only child
is the self-child. This implies that every explicit node either has a parent other than the self-parent
or has a child other than a self-child.
Structural properties. The intrinsic dimensionality measure considered here is the expansion
dimensionfrom Karger & Ruhl, 2002 [6] defined as follows:

Definition 2.1. Let Bℛ(p, �) = {r ∈ ℛ ⊂ X : d(p, r) ≤ �} denote a closed ball of radius
� around ap ∈ ℛ. Then, theexpansion constant of ℛ is defined as the smallestc ≥ 2 such
∣Bℛ(p, 2�)∣ ≤ c ∣Bℛ(p, �)∣ ∀p ∈ ℛ and ∀� > 0. The intrinsic dimensionality (or expansion
dimension) ofℛ is given bydKR(ℛ) = log c.

We make use of the following lemmas from Beygelzimer et.al.,2006 [1] in our runtime proofs.

Lemma 2.1. (Width bound) The number of children of any nodep is bounded byc4.

Lemma 2.2. (Growth bound) For allp ∈ ℛ and � > 0, if there exists a pointr ∈ ℛ such that
2� < d(p, r) ≤ 3�, then∣B(p, 4�)∣ ≥

(

1 + 1
c2

)

∣B(p, �)∣ .

Lemma 2.3. (Depth bound) The maximum depth of any pointp in the explicit representation is
O(c2 logN).

Single point search: Single tree nearest neighbor. Given a cover treeT built on a setℛ, the
nearest neighbor of a queryq can be found with theFindNN subroutine in Algorithm 1. The
algorithm uses the triangular inequality to prune away portions of the tree that contain points distant
from q. The following theorem provides a runtime bound for the single point search.

Theorem 2.1. (Query time) If the datasetℛ ∪ {q} has expansion constantc, the nearest neighbor
of q can be found in timeO(c12 logN).

Batch Query: The dual tree algorithm for all-nearest-neighbor (FindAllNN subroutine in Algo-
rithm 1) using cover trees is provided in Beygelzimer et.al., 2006 [14] as batch-nearest-neighbor.

3 Runtime Analysis of All-Nearest-Neighbors
In the bichromatic case, the performance of theFindAllNN algorithm (or any dual-tree algorithm)
will depend on the degree of difference between the query andreference sets. If the sets are nearly
identical, then the runtime will be close to the monochromatic case. If the inter-point distances in the
query set are very large relative to those between references, then the algorithm may have to descend
to the leaves of the query tree before making any descends in the reference tree. This case offers no
improvement over the performance of the single-tree algorithm applied to each query. In order to
quantify this difference in scale for our runtime analysis,we introduce thedegree of bichromaticity:

Definition 3.1. Let S andT be cover trees built on query setQ and reference setℛ respectively.
Consider a dual-tree algorithm with the property that the scales ofS andT are kept as close as
possible –i.e. the tree with the larger scale is always descended. Then, thedegree of bichromaticity
� of the query-reference pair(Q,ℛ) is the maximum number of descends inS between any two
descends inT .

In the monochromatic case, the trees are identical and the traversal alternates between them. Thus,
the degree of bichromaticity is� = 1. As the difference in scales of the two data sets increases,
more descends in the query tree become necessary, giving a higher degree of bichromaticity. Using
this definition, we can prove the main result of this section.
Theorem 3.1. Given a reference setℛ of sizeN and expansion constantcℛ, a query setQ of size
O(N) and expansion constantcQ, and bounded degree of bichromaticity� of the(Q,ℛ) pair, the
FindAllNN subroutine of Algorithm 1 computes the nearest neighbor inℛ of each point inQ in
O(c12ℛ c4�Q N) time.

3

Algorithm 1 Single tree and batch query algorithm for Nearest Neighbor search and Approximate
Kernel summation
FindNN(ℛ-Tree T , query q)

Initialize R∞ = C∞.
for i =∞ to −∞ do

3: R = {Cℎildren(r) : r ∈ Ri}
Ri−1 = {r ∈ R : d(q, r) ≤ d(q,R) + 2i}

end for
6: return arg min

r∈R−∞

d(q, r)

FindAllNN (Q-subtreeqj ,ℛ-cover setRi)
if i = −∞ then
∀q ∈ L(qj) return arg min

r∈R−∞

d(q, r).

// L(qj) is the set of all the leaves of the subtreeqj .
3: else ifj < i then

R = {Cℎildren(r) : r ∈ Ri}
Ri−1 = {r ∈ R :

d(qj , r) ≤ d(qj , R) + 2i + 2j+2}
6: FindAllNN (qj , Ri−1)

else
∀pj−1 ∈ Cℎildren(qj) FindAllNN (pj−1, Ri)

9: end if
KernelSum(ℛ-tree T , query q)

Initialize R∞ = C∞, f̂(q) = 0
for i =∞ to −∞ do

3: R = {Cℎildren(r) : r ∈ Ri}
Ri−1 = {r ∈ R : Kℎ(d(q, r)− 2i)

−Kℎ(d(q, r) + 2i) > �}

f̂(q) = f̂(q)+
∑

r∈{R−Ri−1}
Kℎ(d(q, r)) ⋅ ∣L(r)∣

6: end for
return f̂(q) = f̂(q) +

∑

r∈R−∞

Kℎ(d(q, r))

AllKernelSum(Q-subtreeqj ,
ℛ-cover setRi)

Initialize Δf (q)← 0∀q ∈ q∞
if i = −∞ then

3: for ∀q ∈ L(qj) do
f̂(q) = f̂(q)

+
∑

r∈R−∞

Kℎ(d(q, r))

+Δf (qj)
end for

6: Δf (qj) = 0
else

if j < i then
9: R = {Cℎildren(r) : r ∈ Ri}

Ri−1 = {r ∈ R :
Kℎ(d(qj , r)− 2i − 2j+1)
−Kℎ(d(qj , r) + 2i + 2j+1)
> �}

Δf (qj) = Δf (qj)+
∑

r∈R∖Ri−1

Kℎ(d(qj , r)) ⋅ ∣L(r)∣

12: AllKernelSum (qj , Ri−1)
else

for ∀pj−1 ∈ Cℎildren(qj) do
15: Δf (pj−1) = Δf (pj−1)+Δf (qj)

AllKernelSum (pj−1, Ri)
end for

18: Δf (qj) = 0
end if

end if

Proof. The computation at Line 3 is done for each of the query nodes atmost once, hence takes
O(maxi ∣Ri∣ ∗N) computations.

The traversal of a reference node is duplicated over the set of queries only if the query tree is
descended just before the reference tree descend. For everyquery descend, there would be at most
O(c4Q) duplications (width bound) for every reference node traversal. Since the number of query
descends between any two reference descends is upper bounded by � and the number of explicit
reference nodes isO(N), the total number of reference node considered in Line 5 in the whole
algorithm is at mostO(c4�Q N).

Since at any level of recursion, the size ofR is bounded byc4ℛ maxi ∣Ri∣ (width bound), and the
maximum depth of any point in the explicit tree isO(c2ℛ logN) (depth bound), the number of nodes
encountered in Line 6 isO(c4+2

ℛ maxi ∣Ri∣ logN). Since the traversal down the query tree causes
duplication, and the duplication of any reference node is upper bounded byc4�Q , Line 6 takes at most
O(c4�Q c6ℛ maxi ∣Ri∣ logN) in the whole algorithm.

Line 9 is executed just once for each of the explicit nodes of the query tree and hence takes at most
O(N) time.

Consider anyRi−1 = {r ∈ R : d(qj , r) ≤ d+2i+2j+2}whered = d(qj , R). Given thatCi−1 is the
(i−1)tℎ level of the reference treeRi−1 = B(qj , d+2i+2j+2)∩R ⊆ B(qj , d+2i+2j+2)∩Ci−1 ⊆
B(qj , d + 2i + 2i+1) ∩ Ci−1 sinceR ⊆ Ci−1 andj < i in this part of the recursion. Ifd > 2i+2,

4

∣B(qj , d + 2i + 2i+1)∣ ≤ ∣B(qj , 2d)∣ ≤ c2ℛ
∣

∣B(qj ,
d
2)
∣

∣. Now d ≤ d(qj ,ℛ) + 2i sinceR ⊆ Ci−1

andd > 2i+2, d(qj ,ℛ) > 2i+1, making
∣

∣B(qj ,
d
2)
∣

∣ = ∣{qj}∣ = 1. Hence∣Ri−1∣ ≤ c2ℛ.

If d ≤ 2i+2, as in Beygelzimer et.al. [1] the number of disjoint balls ofradius2i−2 that can be packed
in B(qj , d+2i+2i+1) is bounded as∣B(qj , d+2i+2i+1+2i−2)∣ ≤ ∣B(r, 2(d+2i+2i+1)+2i−2)∣ ≤
∣B(r, 2i+3 + 2i+1 + 2i+2 + 2i−2)∣ ≤ ∣B(r, 2i+4)∣ ≤ ∣c6ℛB(r, 2i−2)∣ for somer ∈ Ci−1. Any such
ballB(r, 2i−2) can contain at most one point inCi−1, making∣Ri−1∣ ≤ c6ℛ.

Thus, the algorithm takesO(c6ℛN + c4�Q N + c12ℛ c4�Q logN +N) which isO(c12ℛ c4�Q N).

Corollary 3.1. In the monochromatic case with a datasetℛ of sizeN having an expansion constant
c, theFindAllNN subroutine of Algorithm 1 has a runtime bound ofO(c16N).

Proof. In the monochromatic case,cQ = cℛ = c and the degree of bichromaticity� = 1 since the
query and the reference tree are the same. Therefore, by Theorem 3.1, the result follows.

4 Runtime Analysis of Approximate Kernel Summations

For infinite tailed kernelsK(⋅), the exact computation of kernel summations is infeasible without
O(N2) operations. Hence the goal is to efficiently approximatef(q) =

∑

r K(d(q, r)) where
K(⋅) is a monotonically decreasing non-negative kernel function. We employ the two widely used
approximating schemes listed below:

Definition 4.1. An algorithm guarantees� absolute error bound, if for each exact valuef(qi) for

qi ∈ Q, it computesf̂(qi) such that
∣

∣

∣
f̂(qi)− f(qi)

∣

∣

∣
≤ N�1.

Definition 4.2. An algorithm guarantees� relative error bound , if for each exact valuef(qi) for

qi ∈ Q, it computesf̂(qi) ∈ ℝ such that
∣

∣

∣
f̂(qi)− f(qi)

∣

∣

∣
≤ � ∣f(qi)∣.

Approximate kernel summation is more computationally intensive than nearest neighbors because
pruning is not based on the distances alone but also on the analytical properties of the kernel
(i.e.smoothness and extent). Therefore, we require a more extensive runtime analysis, especially for
kernels with an infinite extent, such as the Gaussian kernel.We first prove logarithmic running time
for the single-query kernel sum problem under an absolute error bound and then show linear running
time for the dual-tree algorithm. We then extend this analysis to include relative error bounds.

4.1 Single Tree Approximate Kernel Summations Under Absolute Error

The algorithm for computing the approximate kernel summation under absolute error is shown in the
KernelSum subroutine of Algorithm 1. The following theorem proves that KernelSum produces
an approximation satisfying the� absolute error.

Theorem 4.1.TheKernelSum subroutine of Algorithm 1 outputŝf(q) such that∣f̂(q)−f(q)∣ ≤ N�.

Proof. A subtree rooted atr ∈ Ci−1 is pruned as per Line 5 ofKernelSum since for∀r′ ∈ L(r),
K(d(q, r) + 2i) ≤ K(d(q, r′)) ≤ K(d(q, r) − 2i) and ∣K(d(q, r)) − K(d(q, r′))∣ ≤ �. This
amounts to limiting the error per each kernel evaluation to be less than� (which also holds true
for each contribution computed exactly forr ∈ R−∞, and by the triangle inequality the kernel
approximate sum̂f(q) will be within N� of the true kernel sumf(q).

The following theorem proves the runtime of the single-query kernel summation with smooth and
monotonically decreasing kernels using a cover tree.

Theorem 4.2. Given a reference setℛ of sizeN and expansion constantc, an error value�, and a
monotonically decreasing smooth non-negative kernel function K(⋅) concave forx ∈ [0, ℎ] and
convex forx ∈ (ℎ,∞) for someℎ > 0, the KernelSum subroutine of Algorithm 1 computes
the kernel summation at a queryq approximately up to� absolute error with a runtime bound of
O(c2(1+max{�−i1+3,−i1+4,4}) logN) time where

� =
⌈

log2 K
(−1) (�)

⌉

, = ⌈log2 ℎ⌉, i1 =
⌊

log2

(

−�
K′(ℎ)

)⌋

, andK ′(⋅) is the derivative ofK(⋅).

1This means thetotal approximation error should scale linearly with respect to the number of points. Oth-
erwise, asN → ∞, the error criterion will require error per each kernel evaluation to converge to zero. This
prohibits achieving any speedup.

5

Proof. We assume that any argument ofK(⋅) is lower bounded at 0. Now define the following sets:

Rl
i−1 = {r ∈ Ri−1 : d(q, r) ≤ ℎ− 2i}

Rm
i−1 = {r ∈ Ri−1 : ℎ− 2i < d(q, r) ≤ ℎ+ 2i}

Ru
i−1 = {r ∈ Ri−1 : d(q, r) > ℎ+ 2i}

such thatRi−1 = Rl
i−1 ∪Rm

i−1 ∪Ru
i−1, and are pairwise disjoint. Forr ∈ Rl

i−1:

� <K(max(0, (d(q, r)− 2i)))−K(d(q, r) + 2i)

≤(K(d(q, r) + 2i)− 2i+1K ′(d(q, r) + 2i))−K(d(q, r) + 2i) = −2i+1K ′(d(q, r) + 2i)

because of the concavity of the kernel functionK(⋅). Therefore,

K
′(−1)
[0,ℎ−2i]

(

−�

2i+1

)

− 2i < d(q, r) ≤ ℎ− 2i

whereK ′(−1)
[a,b] (⋅) is the inverse of theK ′(⋅) whose value is restricted to be in the interval[a, b]. For

r ∈ Rm
i−1,

� < K(max(0, (d(q, r)− 2i)))−K(d(q, r) + 2i) ≤ −2K ′(ℎ)(d(q, r)− ℎ)

which implies that

ℎ+
�

2(−K ′(ℎ))
< d(q, r) ≤ ℎ+ 2i

Similarly, for r ∈ Ru
i−1, � < −2i+1K ′(d(q, r)− 2i) implying

ℎ+ 2i < d(q, r) < K
′(−1)
(ℎ+2i,∞)

(

−�

2i+1

)

+ 2i.

Note that0 ≥ K ′(d(q, r)) ≥ K ′(ℎ) for d(q, r) > ℎ+2i, which implies that −�
2i+1 ≥ K ′(ℎ) and thus

i ≥
⌊

log2

(

−�
K′(ℎ)

)⌋

= i1. Below the leveli1, Rl
i−1 = Ru

i−1 = ∅. Trivially, for r ∈ Ri−1 implies

thatK(dmax − 2i) > � wheredmax = maxr∈Ri−1
d(q, r).

Case 1:i > i1
Trivially, K(dmax − 2i) > � wheredmax = maxr∈Ri−1

d(q, r). In this case,ℎ+ 2i < dmax. This
impliesdmax − 2i > ℎ > 0, and we can invert the function to obtain:dmax < K(−1) (�) + 2i. This
implies thatd(q, r) ≤ dmax < K(−1) (�) + 2i We can count up the number of balls of radius2i−2

insideB
(

q,K(−1) (�) + 2i + 2i−2
)

. Let � =
⌈

log2 K
(−1) (�)

⌉

. Then,

max ∣Ri−1∣ ≤ ∣B(q, 2�+2i+2i−2)∩Ci−1∣ ≤

⎧

⎨

⎩

∣B(q, 2i+1) ∩ Ci−1∣ ≤ c3, � < i

∣B(q, 2i+2) ∩ Ci−1∣ ≤ c4, � = i

∣B(q, 2�+1) ∩ Ci−1∣ ≤ c�−i+3 = c�−i1+3, � > i

Case 2:i ≤ i1

In this case,ℎ + �
2(−K′(ℎ)) ≤ dmin ≤ dmax ≤ ℎ + 2i for i ≥

⌊

log2
�

2(−K′(ℎ))

⌋

= i1 − 1; for

i < i1 − 1, ∣Rm
i−1∣ = 0. Let = ⌈log2 ℎ⌉. Similar to the case above, we count the number of balls

of radius2i−2 insideB
(

q, 2 + 2i + 2i−2
)

.

max ∣Ri−1∣ ≤ ∣B(q, 2+2i+2i−2)∩Ci−1∣ ≤

⎧

⎨

⎩

∣B(q, 2i+1) ∩ Ci−1∣ ≤ c3, < i

∣B(q, 2i+2) ∩ Ci−1∣ ≤ c4, = i

∣B(q, 2+1) ∩ Ci−1∣ ≤ c−i+3 = c−i1+4, > i

From the runtime proof of the single-tree nearest neighbor algorithm using cover tree in Beygelzimer
et.al., 2006, the running time is bounded by:

O(kmax ∣Ri−1∣
2 + kmax ∣Ri−1∣c

4) ≤ O(c2(1+max{�−i1+3,−i1+4,4}) logN)

6

4.2 Dual Tree Approximate Kernel Summations Under AbsoluteError

An algorithm for the computation of kernel sums for multiplequeries is shown in theAllKernelSum
subroutine of Algorithm 1, analogous toFindAllNN for batch nearest-neighbor query. The dual-tree
version of the algorithm requires a stricter pruning rule toensure correctness for all the queries in a
query subtree. Additionally, every query nodeqj has an associatedO(1) storageΔf (qj) that accu-
mulates thepostponedkernel contribution for all query points under the subtreeqj . The following
theorem proves the correctness of theAllKernelSum subroutine of Algorithm 1.

Theorem 4.3. For all q in the in the query setQ, the AllKernelSum subroutine of Algorithm 1
computes approximationŝf(q) such that∣f̂(q)− f(q)∣ ≤ N�.

Proof. Line 10 of the algorithm guarantees that∀r ∈ R∖Ri−1 at a given leveli,

∣K(d(qj , r))−K(d(q, r))∣ ≤ ∣K(d(qj , r)− 2i − 2j+1)−K(d(qj , r) + 2i + 2j+1)∣ ≤ �

for all q ∈ L(qj). Basically, the minimum distance is decreased and the maximum distance is
increased by2j+1, which denotes the maximum possible distance fromqj to any of its descendants.
Trivially, contributions added in Line 4 (the base case) satisfy the � absolute error for each kernel
value and the result follows by the triangle inequality.
Based on the runtime analysis of the batch nearest neighbor,the runtime bound ofAllKernelSum is
given by the following theorem:

Theorem 4.4. Let ℛ be a reference set of sizeN and expansion constantcℛ, and letQ be a
query set of sizeO(N) and expansion constantcQ. Let the(Q,ℛ) pair have a bounded degree of
bichromaticity. LetK(⋅) be a monotonically-decreasing smooth non-negative kernelfunction that is
concave forx ∈ [0, ℎ] and convex forx ∈ (ℎ,∞) for someℎ > 0. Then, given an error tolerance�,
theAllKernelSum subroutine of Algorithm 1 computes an approximationf̂(q) ∀q ∈ Q that satisfies
the� absolute error bound in timeO(N).

Proof. We first boundmax ∣Ri−1∣. Note that in Line 9 to Line 13 of theAllKernelSum , j ≤ i+ 1,
and thus2i + 2j+1 ≤ 2i + 2i = 2i+1. Similar to the proof for the single-tree case, we define:

Rl
i−1 = {r ∈ Ri−1 : d(q, r) ≤ ℎ− 2i+1}

Rm
i−1 = {r ∈ Ri−1 : ℎ− 2i+1 < d(q, r) ≤ ℎ+ 2i+1}

Ru
i−1 = {r ∈ Ri−1 : d(q, r) > ℎ+ 2i+1}

such thatRi−1 = Rl
i−1 ∪ Rm

i−1 ∪ Ru
i−1, and pairwise disjoint. From here, we can follow the tech-

niques shown for the single-tree case to show thatmax ∣Ri−1∣ is constant dependent onc. Therefore,
the methodology of the runtime analysis of batch nearest neighbor gives theO(N) runtime for batch
approximate kernel summation.

4.3 Approximations Under Relative Error

We now extend the analysis for absolute error bounds to coverapproximations under the relative
error criterion given in Definition 4.2.

Single-tree case.For a query pointq, the goal is computêf(q) satisfying Definition 4.2. An approx-
imation algorithm for a relative error bound is similar to the KernelSum subroutine of Algorithm 1
except that the definition ofRi−1 (i.e. the set of reference points that are not pruned at the given
level i) needs to be changed to satisfy the relative error constraint as follows:

Ri−1 = {r ∈ R : K(d(q, r)− 2i)−K(d(q, r) + 2i) >
�f(q)

N
}

wheref(q) is the unknown query sum. Hence, letdmax = max
r∈ℛ

d(q, r), and expand the setRi−1 to:

Ri−1 ⊆ {r ∈ R : K(d(q, r)− 2i)−K(d(q, r) + 2i) > �K(dmax)} (1)

Note thatdmax can be trivially upper bounded by:dmax ≤ d(q, rroot) + 2p+1 = dmax,u wherep is
the scale of the root of the reference cover tree in the explicit representation.

Theorem 4.5. Let the conditions of Thm. 4.2 hold. Then, theKernelSum subroutine of Algorithm 1
with Line 5 redefined as Eqn. 1 computes the kernel summationf̂(q) at a queryq with � relative
error in O(logN) time.

7

Proof. A noder ∈ Ci−1 can be pruned by the above pruning rule since forr′ ∈ L(r), K(d(q, r) +
2i) ≤ K(d(q, r′)) ≤ K(d(q, r)−2i) and∣K(d(q, r))−K(d(q, r′))∣ ≤ �K(dmax,u). This amounts
to limiting the error per each kernel evaluation to be less than �K(dmax,u) (which also holds true
for each contribution computed exactly forr ∈ R−∞, and by the triangle inequality the kernel
approximate sum̂f(q) will be within �NK(dmax,u) ≤ �f(q) of the true kernel sumf(q). Since the
relative error is an instance of the absolute error, the algorithm also runs inO(logN).

Dual-tree case.In this case, for each query pointq ∈ Q, an approximation̂f(q) is to be computed
as per Definition 4.2. As in the absolute error case, we must satisfy a more difficult condition.
Therefore,dmax,u is larger, taking into account both the maximum possible distance from the root
of the query tree to its descendants and the maximum possibledistance from the root of the reference
tree to its descendants. HenceRi−1 is defined as follows:

Ri−1 = {r ∈ R : K(d(q, r)− 2i − 2j+1)−K(d(q, r) + 2i + 2j+1) > �K(dmax,u)} (2)

whered(qroot, rroot) + 2pQ+1 + 2pℛ+1 = dmax,u andpQ, pℛ are the scales of the roots of the
query and reference cover trees respectively in the explicit representations. The correctness of the
algorithm follows naturally from Theorems 4.4 and 4.5.
Corollary 4.1. Let the conditions of Thm. 4.4 hold. Then, given an error value �, theAllKernel-
Sum subroutine of Algorithm 1 with Line 11 redefined as Eq. 2 computes an approximate kernel
summationf̂(q) ∀q ∈ Q that satisfies an� relative error bound with a runtime bound ofO(N).

Note that for the single-tree and dual-tree algorithms under the relative error criterion, the pruning
rules that generateRi−1 shown above are sub-optimal in practice, because they require every pair-
wise kernel value that is pruned to be within� relative error. There is a more sophisticated way of
accelerating this using an alternative method [9, 10, 11] that is preferable in practice.

4.4 N -body Simulation

N -body potential summation is an instance of the kernel summation problem that arises in com-
putational physics and chemistry. These computations use the Coulombic kernelK(d) = 1/d,
which describes gravitational and electrostatic interactions. This kernel is infinite at zero distance
and has no inflection point (i.e. it is convex ford ∈ (0,∞)). Nevertheless, it is possible to obtain
the runtime behavior using the results shown in the previoussections. The single query problem
f(q) =

∑

r
1

d(q,r) is considered first under the assumption thatminr∈ℛ,q ∕=r d(q, r) > 0.

Corollary 4.2. Given a reference setℛ of sizeN and expansion constantc, an error value� and
the kernelK(d) = 1/d(q, r), the KernelSum subroutine of Algorithm 1 computes the potential
summation at a queryq with � error in O(logN) time.

Proof. Let dmin = min
r∈ℛ,q ∕=r

d(q, r). LetKe(d) be theC2 continuous construction [15] such that:

Ke(d) =

{

1
dmin

(

15
8 −

5
4

(

d
dmin

)2
+ 3

8

(

d
dmin

)4
)

, d < dmin

1
d
, d ≥ dmin

The effective kernelKe(d) can be constructed inO(logN) time using the single-tree algorithm for
nearest neighbor described in Beygelzimer et.al., 2006 [1]. Note that the second derivative of the
effective kernel isK ′′

e (d) =
−5

2(dmin)3 + 9d2

2(dmin)5 for d < dmin. Thus it is concave ford <
√
5
3 dmin

and convex otherwise, so the second derivative agrees atd = dmin. Note thatKe(d) agrees with
K(d) for d ≥ dmin. Hence, by consideringdmin equivalent to the bandwidthℎ in Theorem 4.2 and
applying the same theorem on theKernelSum subroutine of Algorithm 1 with the aforementioned
kernel, we prove theO(logN) runtime bound.

The runtime analysis for the batch case of the algorithm follows naturally.

Corollary 4.3. Given a reference setℛ of sizeN and expansion constantcℛ and a query setQ of
sizeO(N) and expansion constantcQ with a bounded degree of bichromaticity for the(Q,ℛ) pair,
an error value� and the kernelK(d) = 1/d(q, r), the AllKernelSum subroutine of Algorithm 1
approximates the potential summation∀q ∈ Q up to� error with a runtime bound ofO(N).

Proof. The same effective kernel as Corollary 4.2 is used, except thatdmin = min
q∈Q

min
r∈ℛ,q ∕=r

d(q, r).

The result follows from applying Theorem 4.4, and noting that running the dual-tree computation
with K(d(q, r)) = 1/d(q, r) is equivalent to running the algorithm withKe(d(q, r)).

8

5 Conclusions

Extensive work has attempted to reduce the quadratic scaling of the all-query problems in statistical
machine learning. So far, the improvements in runtimes haveonly been empirical with no rigorous
runtime bounds [2, 8, 9, 16, 17]. Previous work has provided algorithms with rough linear runtime
arguments for certain instances of these problems [13, 5, 12], but these results only apply to the
monochromatic case. In this paper, we extend the existing work [6, 1, 18, 19] to provide algorithms
for two important instances of the all-query problem (namely all-nearest-neighbor and all-kernel-
summation) and obtain for the first time a linear runtime bound for dual-tree algorithms for the more
general bichromatic case of the all-query problems.

These results provide an answer to the long-standing question of the level of improvement possible
over the quadratic scaling of the all-query problems. The techniques used here finally point the way
to analyzing a host of other tree-based algorithms used in machine learning, including those that
involven-tuples, such as then-point correlation (which näıvely requireO(Nn) computations).

References

[1] A. Beygelzimer, S. Kakade, and J.C. Langford. Cover Trees for Nearest Neighbor.Proceedings
of the 23rd International Conference on Machine learning, pages 97–104, 2006.

[2] J. H. Freidman, J. L. Bentley, and R. A. Finkel. An Algorithm for Finding Best Matches in
Logarithmic Expected Time.ACM Trans. Math. Softw., 3(3):209–226, September 1977.

[3] K. Deng and A. W. Moore. Multiresolution Instance-BasedLearning. pages 1233–1242.

[4] D. Lee and A. G. Gray. Faster Gaussian Summation: Theory and Experiment. InProceedings
of the Twenty-second Conference on Uncertainty in Artificial Intelligence. 2006.

[5] J. Barnes and P. Hut. A HierarchicalO(N logN) Force-Calculation Algorithm.Nature, 324,
1986.

[6] D. R. Karger and M. Ruhl. Finding Nearest Neighbors in Growth-Restricted Metrics.Proceed-
ings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pages 741–750,
2002.

[7] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulations.Journal of Compu-
tational Physics, 73:325–248, 1987.

[8] A. G. Gray and A. W. Moore. ‘N -Body’ Problems in Statistical Learning. InNIPS, volume 4,
pages 521–527, 2000.

[9] A. G. Gray and A. W. Moore. Nonparametric Density Estimation: Toward Computational
Tractability. InSIAM International Conference on Data Mining, 2003.

[10] D. Lee, A. G. Gray, and A. W. Moore. Dual-Tree Fast Gauss Transforms. In Y. Weiss,
B. Scḧolkopf, and J. Platt, editors,Advances in Neural Information Processing Systems 18,
pages 747–754. MIT Press, Cambridge, MA, 2006.

[11] D. Lee and A. G. Gray. Fast High-dimensional Kernel Summations Using the Monte Carlo
Multipole Method. InTo appear in Advances in Neural Information Processing Systems 21.
2009.

[12] P. B. Callahan.Dealing with Higher Dimensions: the Well-Separated Pair Decomposition and
its applications. PhD thesis, Johns Hopkins University, Baltimore, Maryland, 1995.

[13] P. B. Callahan and S. R. Kosaraju. A Decomposition of Multidimensional Point Sets with Ap-
plications to k-Nearest-Neighbors and n-body Potential Fields.Journal of the ACM, 62(1):67–
90, January 1995.

[14] A. Beygelzimer, S. Kakade, and J.C. Langford. Cover trees for Nearest Neighbor. 2006.
http://hunch.net/˜jl/projects/covertree/paper/paper.ps.

[15] R. D. Skeel, I. Tezcan, and D. J. Hardy. Multiple Grid Methods for Classical Molecular Dy-
namics.Journal of Computational Chemistry, 23(6):673–684, 2002.

[16] A. G. Gray and A. W. Moore. Rapid Evaluation of Multiple Density Models. InArtificial
Intelligence and Statistics 2003, 2003.

9

[17] A. G. Gray and A. W. Moore. Very Fast Multivariate KernelDensity Estimation via Computa-
tional Geometry. InJoint Statistical Meeting 2003, 2003. to be submitted to JASA.

[18] R. Krauthgamer and J. R. Lee. Navigating Nets: Simple Algorithms for Proximity Search.
15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 791–801, 2004.

[19] K. Clarkson. Fast Algorithms for the All Nearest Neighbors Problem. InProceedings of
the Twenty-fourth Annual IEEE Symposium on the Foundationsof Computer Science, pages
226–232, 1983.

10

