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Abstract

Several key computational bottlenecks in machine learimngive pairwise dis-

tance computations, including all-nearest-neighbordifiig the nearest neigh-
bor(s) for each point, e.g. in manifold learning) and kesw@hmations (e.g. in
kernel density estimation or kernel machines). We congtaeigeneral, bichro-
matic case for these problems, in addition to the scientifablem of N-body

simulation. In this paper we show for the first tir& V') worst case runtimes for
practical algorithms for these problems based on the cozerdata structure [1].

1 Introduction

Pairwise distance computations are fundamental to mangritaugt computations in machine learn-
ing and are some of the most expensive for large datasetsarticydar, we consider the class of
all-query problems, in which the combined interactions akéerencesetR of N points inR” is
computed for each pointin aquerysetQ of sizeO(N). This class of problems includes the pair-
wise kernel summation used in kernel density estimationkamdel machines and the all-nearest
neighbors computation for classification and manifoldriéay. All-query problems can be solved
directly by scanning over th& reference points for each of ti@(N') queries, for a total running
time of O(/V?). Since quadratic running times are too slow for even mogeited problems,
previous work has sought to reduce the number of distanc@utations needed.

We consider algorithms that emplepace-partitioning treet improve the running time. In all the
problems considered here, the magnitude of the effect ofefieyence- on a queryy is inversely
proportional to the distancé(q, ). Therefore, the net effect on the query is dominated by refer
ences that are “close by”. A space-partitioning tree digittee space containing the point set in a
hierarchical fashion, allowing for variable resolutioridentify major contributing points efficiently.

Single-Tree Algorithms. One approach for employing space-partitioning trees iotsicler each
query point separately €. to consider the all-query problem as masiggle-queryproblems. This
approach lends itself tsingle-treealgorithms, in which the references are stored in a tree tlaand
tree is traversed once for each query. By considering thardie between the query and a collection
of references stored in a tree node, the effect of the refesecan be approximated or ignored if the
distances involved are large enough, with appropriateracgiguarantees for some methods.



Thekd-tree structure [2] was developed to obtain the nearesgfhbers of a given query in expected
logarithmic time and has also been used for efficient keragirsations [3, 4]. However, these
methods lack any guarantees on worst-case running time.erarchical data structure was also
developed for efficient combined potential calculation @mputational physics in Barnes & Hut,
1986 [5]. This data structure provides @tlog V) bound on the potential computation for a single
guery, but has no error guarantees. Under their definitiantohsic dimension, Karger & Ruhl [6]
describe a randomized algorithm with(log N) time per query for nearest neighbor search for low-
intrinsic-dimensional data. Krauthgamer & Lee provedithavigating nets algorithm can compute
a single-query nearest-neighbor@(log ) time under a more robust notion of low intrinsic di-
mensionality. The cover tree data structure [1] improves tlvese two results by both guaranteeing
a worst-case runtime for nearest-neighbor and providifigerfit computation in practice relative to
kd-trees. All of these data structures rely on the triangleiradity of the metric space containing
R in order toprunereferences that have little effect on the query.

Dual-Tree Algorithms. The approach described above can be applied to every singly tp im-
prove theO (NN ?) running time of all-query problems © (N log N). A faster approach to all-query
problems uses an algorithmic framework inspired by efficfarticle simulation [7] and general-
ized to statistical machine learning [8] which takes adagatof spatial proximity in bott® and

‘R by constructing a space-partitioning tree on each set. Bets are descended, allowing the
contribution from a distant reference node to be pruned fioergire node of query points. These
dual-tree algorithmshave been shown to be significantly more efficient in pradiies the cor-
responding single-tree algorithms for nearest neighbarcéeand kernel summations [9, 10, 11].
Though conjectured to ha¥@(N') growth, they lack rigorous, general runtime bounds.

All-query problems fall into two categoriemonochromaticwhere@ = R andbichromatic where
Qs distinct fromR. Most of the existing work has only addressed the monochtiormase. The fast
multipole method (FMM)[7] for particle simulations, codsred one of the breakthrough algorithms
of the 20" century, has a non-rigorous runtime analysis based on tiferemdistribution. Methods
based on the well-separated pair decomposition (WSPD) @& been proposed for the all nearest
neighbors problem and particle simulations [13], but aedficient in practice. These methods have
O(N) runtime bounds for the monochromatic case, but it is notrdieas to extend the analysis to
a bichromatic problem. In addition to this difficulty, the WIS#®ased particle simulation method
is restricted to th€1/r)-kernel. In Beygelzimer et.al., 2006 [1], the authors conjee, but do not
prove, that the cover tree data structure using a dual-tgeeitam can compute the monochromatic
all-nearest-neighbors problem@(N).

Our Contribution. In this paper, we prov®(N) runtime bounds for several important instances
of the dual-tree algorithms for the first time using the cdwee data structure [1]. We prove the first
worst-case bounds for any practical kernel summation efgos. We also provide the first general
runtime proofs for dual-tree algorithms on bichromatickgemns. In particular, we give the first
proofs of worst-cas® () runtimes for the following all-query problems:

e All Nearest-neighbors: For all queriesg € Q, find 7*(¢) € R such thatr*(¢) =
arg min,eg d(g,7).

e Kernel summations: For a given kernel functiord((-), compute the kernel summation
fla) =3, er K(d(g,r)) forallg € Q.

e N-body potential calculation: Compute the net electrostatic or gravitational potential
(@) =2 errpqdlg,r) " ateachy € Q.

Outline. In the remainder of this paper, we give our linear runningetipmoofs for dual-tree al-
gorithms. In Section 2, we review the cover tree data strecand state the lemmas necessary for
the remainder of the paper. In Section 3, we state the dealai-nearest-neighbors algorithm and
prove that it require® (V) time. In Section 4, we state the absolute and relative emaran-
tees for kernel summations and again prove the linear rgrtimime of the proposed algorithms. In
the same section, we apply the kernel summation result téVitedy simulation problem from
computational physics, and we draw some conclusions indest

2 Cover Trees

A cover tree [1]T stores a data s® of size N in the form of a levelled tree. The structure has an
O(N) space requirement ar@(N log V) construction time. Each level is a “cover” for the level



beneath it and is indexed by an integer scalhich decreases as the tree is descended.ClLet
denote the set of nodes at scal€or all scaleg, the following invariants hold:
e (nesting invariant’; C C;_1
e (covering tree invariant) For evegpyc C;_1, there exists g € C; satisfyingd(p, q) < 2¢,
and exactly one suchis a parent op.
e (separation invariant) For gil, ¢ € C;, d(p, q) > 2°.

Representations. The cover tree has two different representations: ifingicit representation
consists of infinitely many level€’; with the levelC, containing a single node which is the root
and the levelC'_, containing every point in the dataset as a node. &tg@icit representations
required to store the tree @ (V) space. It coalesces all nodes in the tree for which the orilgt ch
is the self-child. This implies that every explicit nodeheit has a parent other than the self-parent
or has a child other than a self-child.

Structural properties.  The intrinsic dimensionality measure considered here éseitpansion
dimensiorfrom Karger & Ruhl, 2002 [6] defined as follows:

Definition 2.1. Let Bg(p,p) = {r € R C X:d(p,r) < p} denote a closed ball of radius
p around ap € R. Then, theexpansion constant of R is defined as the smallest> 2 such
|Br(p,2p)| < ¢|Br(p,p)] Vp € R and¥p > 0. The intrinsic dimensionality (or expansion

dimension) ofR is given bydx r(R) = log c.
We make use of the following lemmas from Beygelzimer et241Q6 [1] in our runtime proofs.

Lemma 2.1. (Width bound) The number of children of any ngdse bounded by*.

Lemma 2.2. (Growth bound) For allp € R andp > 0, if there exists a point € R such that
2p < d(p,r) < 3p, then|B(p, 4p)| > (1 + %) [B(p, p)| -

Lemma 2.3. (Depth bound) The maximum depth of any peinh the explicit representation is
O(c?log N).

Single point search: Single tree nearest neighbor. Given a cover tred” built on a setR, the
nearest neighbor of a querycan be found with thé-indNN subroutine in Algorithm 1. The
algorithm uses the triangular inequality to prune awayipost of the tree that contain points distant
from ¢. The following theorem provides a runtime bound for the Emqpint search.

Theorem 2.1. (Query time) If the datasé® U {q} has expansion constantthe nearest neighbor
of ¢ can be found in tim®(c'?log N).

Batch Query: The dual tree algorithm for all-nearest-neighbBm@AIINN subroutine in Algo-
rithm 1) using cover trees is provided in Beygelzimer et2006 [14] as batch-nearest-neighbor.

3 Runtime Analysis of All-Nearest-Neighbors

In the bichromatic case, the performance of EiedAlINN algorithm (or any dual-tree algorithm)
will depend on the degree of difference between the queryefiedence sets. If the sets are nearly
identical, then the runtime will be close to the monochraoedse. If the inter-point distances in the
query set are very large relative to those between refesetioen the algorithm may have to descend
to the leaves of the query tree before making any descentis ireference tree. This case offers no
improvement over the performance of the single-tree algoriapplied to each query. In order to
guantify this difference in scale for our runtime analysis,introduce thelegree of bichromaticity

Definition 3.1. Let S and T be cover trees built on query s&t and reference seR respectively.

Consider a dual-tree algorithm with the property that thalss of S and T are kept as close as
possible -i.e.the tree with the larger scale is always descended. Themetdree of bichromaticity

x of the query-reference paiQ, R) is the maximum number of descendsSitbetween any two
descends iff".

In the monochromatic case, the trees are identical anddkiersal alternates between them. Thus,
the degree of bichromaticity is = 1. As the difference in scales of the two data sets increases,
more descends in the query tree become necessary, givighertdegree of bichromaticity. Using
this definition, we can prove the main result of this section.

Theorem 3.1. Given a reference s& of sizeN and expansion constank, a query seQ of size
O(NN) and expansion constant,, and bounded degree of bichromaticityof the (Q, R) pair, the
FindAIINN subroutine of Algorithm 1 computes the nearest neighbdR inf each point inQ in
O(ciicg N) time.



Algorithm 1 Single tree and batch query algorithm for Nearest Neighbarch and Approximate
Kernel summation
FindNN(R-Tree T', query q)

Initialize Rse = Cwo. AllKernelSum (Q-subtreeq;,
for i = coto —oco do o R-cover setR;)
3: R ={Children(r): r € R;} 4 _|n|.t|a||ze Ar(q) < 0V € 4o
Ry = {r € R: d(¢,) < d(g, R) + 2'} if i = —co then
end for 3: forAVq € quj) do
6: return arg r%in d(q,r) flq) = f(q)
rer_
> Kyp(d
FindAlIINN (Q-subtreeg;, R-cover setR;) * re;m w(dla.))
if i = —oo then ' +A¢(qj)
Vq € L(g;) return arg min d(g, ). end for
Il L(g;) is the set of all the leaves of the subtige 6: | Af(g;) =0
3: else ifj < ithen esife : < ithen
R = {Child : R; J st
R'—1{= {; ET%L:(T) r e Ri} 9: R = {Children(r): r € R;}
d(ijr) < d(Qj7R) +2' + 2j+2} Rio1 = {T < L i j+1
6:  FindAINN (g, R,1) Kn(d(gj,r) =2 =277 )
ij_l € C’hzldren(qj) FindAIINN (pj—l: Rz) > €
9: end if Ar(g) = Aplgy)+
KernelSum(R-tree T', query q) TGR%A 1 Kn(d(gj,m)) - [L(r)|
Initialize Ry = Coo, f(q) =0 12: AllKernelSum(g;, R;—1)
for i = oo to —oo do else
3: R ={Children(r): r € R;} for Vp,;_1 € Children(q;) do
Ri—1 ={r € R: Kp(d(g,7) —2") 15: Ag(pj—1) = As(pj-1)+As(q))
. . —Kh(d(qﬂ”) + 21) > 6} AllKernelSum (pj_l, Rl)
f@)=fo+ ¥ Kudgr)|L0)] end for
r€{R—R;_1} 18: A¢(g;) =0
6: end for A end if
return f(q) = f(g) + > Kn(d(g,7)) end if

reR_

Proof. The computation at Line 3 is done for each of the query nodesost once, hence takes
O(max; |R;| * N) computations.

The traversal of a reference node is duplicated over the fsqui@ries only if the query tree is
descended just before the reference tree descend. Foragweny descend, there would be at most
O(c4Q) duplications (width bound) for every reference node traakr Since the number of query
descends between any two reference descends is upper booydeand the number of explicit
reference nodes i® (), the total number of reference node considered in Line 5 énvthole
algorithm is at mosO (¢g'N).

Since at any level of recursion, the size®fis bounded by}, max; |R;| (width bound), and the
maximum depth of any point in the explicit tree@gc2 log N) (depth bound), the number of nodes
encountered in Line 6 i®(cx > max; |R;|log N). Since the traversal down the query tree causes
duplication, and the duplication of any reference node eujpounded by‘lg”, Line 6 takes at most
O(cg % max; |R;|log N) in the whole algorithm.

Line 9 is executed just once for each of the explicit nodedefquery tree and hence takes at most
O(N) time.

Considerany?;_; = {r € R: d(q;,r) < d+2'+2772} whered = d(g;, R). Given that’;_; isthe
(i—1)" level of the reference treR;_; = B(q;,d+2'+27*2)NR C B(q;,d+2'+27*2)NC;_; C
B(gj,d + 2 +21) N C;_; sinceR C C;_; andj < i in this part of the recursion. # > 22,

4



|B(qj,d+ 20 + 2i+1)| < |B(qj72d)| < 0»2,3 ’.B(q]7 %)| Now d < d(qu) + 21 sinceR - CZ',1
andd > 2142, d(q;, R) > 21, making| B(q;, )| = [{g;}| = 1. Hence|R;_;| < c%.

If d < 2%2, asin Beygelzimer et.al. [1] the number of disjoint ballsanfius2’—2 that can be packed
in B(g;,d+2+2"1) isbounded afB(q;, d+2°+27142172)| < |B(r,2(d+2°+21)+272)| <

| B(r, 2013 4 201 4 2042 4 98=2)| < | B(r, 2074)| < |c% B(r,2¢72)]| for somer € C;_;. Any such
ball B(r,2?~2) can contain at most one pointdr}_;, making|R;_1| < c%.

Thus, the algorithm take® (¢} N + c&' N + cjZcg log N 4+ N) which isO(ciZcg N). O

Corollary 3.1. In the monochromatic case with a datagebf sizeN having an expansion constant
¢, theFindAIINN subroutine of Algorithm 1 has a runtime bound®fc'® V).

Proof. In the monochromatic caseg = cgx = c and the degree of bichromaticity= 1 since the
qguery and the reference tree are the same. Therefore, byérheébl, the result follows. O

4 Runtime Analysis of Approximate Kernel Summations

For infinite tailed kerneld<(-), the exact computation of kernel summations is infeasititeomt
O(N?) operations. Hence the goal is to efficiently approximate) = > K(d(q,r)) where
K (-) is a monotonically decreasing non-negative kernel functie employ the two widely used
approximating schemes listed below:

Definition 4.1. An algorithm guaranteesabsolute error bound, if for each exact valug (g;) for
¢ € Q, it computesf(¢;) such that‘f(qi) — fg)| < Né.

Definition 4.2. An algorithm guarantees relative error bound, if for each exact valug(g;) for
¢ € Q, it computesf(¢;) € R such thaqf(qi) — f(g)| <elf(q)l-

Approximate kernel summation is more computationallyristee than nearest neighbors because
pruning is not based on the distances alone but also on tHgtiaahproperties of the kernel
(i.e.smoothness and extent). Therefore, we require a more @xenstime analysis, especially for
kernels with an infinite extent, such as the Gaussian kevdeffirst prove logarithmic running time
for the single-query kernel sum problem under an absolute bound and then show linear running
time for the dual-tree algorithm. We then extend this analisinclude relative error bounds.

4.1 Single Tree Approximate Kernel Summations Under Absolte Error

The algorithm for computing the approximate kernel sumamatinder absolute error is shown in the
KernelSum subroutine of Algorithm 1. The following theorem provesttk@rnelSum produces
an approximation satisfying theabsolute error.

Theorem 4.1. TheKernel Sum subroutine of Algorithm 1 output§q) such that f(¢)— f(¢)| < Ne.

Proof. A subtree rooted at € C;_; is pruned as per Line 5 ¢ernelSum since forvr’ € L(r),
K(d(g.r) +2) < K(d(g,r')) < K(d(g,r) — 2') and |K(d(q,r)) — K(d(g,”"))| < e This
amounts to limiting the error per each kernel evaluationdddss thare (which also holds true
for each contribution computed exactly fore R_.., and by the triangle inequality the kernel

approximate sunf(q) will be within Ne of the true kernel sunf(q). O

The following theorem proves the runtime of the single-guesrnel summation with smooth and
monotonically decreasing kernels using a cover tree.

Theorem 4.2. Given a reference s& of sizeN and expansion constantan error valuee, and a
monotonically decreasing smooth non-negative kerneltiomd< (-) concave forz € [0, k] and
convex forz € (h,o0) for someh > 0, the KernelSum subroutine of Algorithm 1 computes
the kernel summation at a quegyapproximately up t@ absolute error with a runtime bound of
O(P(HHmaxin—ir+3,9=1+44}) 60 V) time where

n = [logy K=V ()], v = [logy h], i1 = {log2 (K‘—(Eh))J andK’(-) is the derivative of< (-).

1This means théotal approximation error should scale linearly with respect to the numberinfgth-
erwise, asV — oo, the error criterion will require error per each kernel evaluation toveage to zero. This
prohibits achieving any speedup.



Proof. We assume that any argument#f-) is lower bounded at 0. Now define the following sets:
RL , ={reRii:d(qr)<h-—2"}
mo={reRi_,:h—2"<d(qr)<h+2"}

R;il = {7‘ ceR;_1: d(q,?‘) > h+ 21}
suchthat?;_; = Rl_, UR™, U R* ,, and are pairwise disjoint. Ferc R._;:
e <K (max(0, (d(q,r) —2")) — K(d(q,7) +2)
<(K(d(g,r) +2°) = 271K (d(g,r) +2)) = K(d(q,7) +2') = =27 K'(d(q, ) +2)

because of the concavity of the kernel functigi-). Therefore,
1(—1) —€ p i
K[O,h—Qi] (21“) —2'<d(q,r) <h—2

whereK['fL’b]l)(-) is the inverse of thé(’ () whose value is restricted to be in the interlglb]. For
re R,

e < K(max(0, (d(q,r) — 2%)) — K(d(q,7) +2") < —2K'(h)(d(q,7) — h)
which implies that

Similarly, forr € R® ;, e < —271K’(d(q,7) — 2*) implying

i 1(=1) — %
h+2" <d(q,r) < Kj s o (2L+1)+2

Note that) > K'(d(q,r)) > K'(h) for d(q,r) > h+2°, which implies that=+ > K’(h) and thus
i > {bgg (K,(h )J = iy. Below the leveli,, Rl , = R , = (. Trivially, for r € R,_, implies
that K (dmae — 2¢)

Case 1li > i, 4 ‘

Trivially, K(d™** — 2*) > e whered™*® = max,cr,_, d(q,r). In this caseh + 2" < d™**. This
impliesd™** —2¢ > h > 0, and we can invert the function to obtaifi”*® < K (=) (¢) + 2%, This

implies thatd(q,r) < d™** < K=Y (¢) 4 2¢ We can count up the number of balls of raditis?
inside B (¢, K=V (e) +2' + 2172). Letn = [log, K=Y (¢)]. Then,

> e whered™** = max,cg,_, d(gq,r).

1B(q,2) N Cia| < c?m <
max [R;_1| < |B(q,2"+2'+2"*)NCi_1| < { |B(¢,272) N Cia| < ¢ p =i
|B(q, 2 ) N Ci_q| < 73 = en=id3 >
Case 2i <43
In this case/ + SRR K,(h)) < dmin < gmer < o+ 20 for i > {logQ WJ =i — 1; for
i <iy—1,|R™,| =0. Lety = [log, h]. Similar to the case above, we count the number of balls
of radius2:~2 inside B (¢, 27 4 2 + 2:72).

|B(q, 2" ) NCiq| < 3,y <ii
max |R;_1| < |B(q,2"+2'+2"7?)NC;_1| < |B(q, 2N C;q| <ty =i
|B(q, 22t NCi_q| < 73 = y=iitd 1y 5

From the runtime proof of the single-tree nearest neighlgarethm using cover tree in Beygelzimer
et.al., 2006, the running time is bounded by:

O(kmax|R;_1|? 4 kmax |R;_|c*) < O(PUFmaxin=ti+dy—iit4d}) 1o0 )



4.2 Dual Tree Approximate Kernel Summations Under AbsoluteError

An algorithm for the computation of kernel sums for multiglgeries is shown in thallKernelSum
subroutine of Algorithm 1, analogousfndAIINN for batch nearest-neighbor query. The dual-tree
version of the algorithm requires a stricter pruning rulemnsure correctness for all the queries in a
query subtree. Additionally, every query nogiehas an associatdd(1) storageA ;(g;) that accu-
mulates thepostponedkernel contribution for all query points under the subtgeeThe following
theorem proves the correctness of KllKernelSum subroutine of Algorithm 1.

Theorem 4.3. For all ¢ irl the in the query se@, the AllKernelSum subroutine of Algorithm 1
computes approximationq) such that f (¢) — f(¢)| < Ne.

Proof. Line 10 of the algorithm guarantees thate R\ R;_; at a given levet,
K (d(gj, 7)) = K(d(g,r)| < |K(d(gj,7) — 2" = 2"71) — K(d(gj,r) +2' +277)| < e

for all ¢ € L(g;). Basically, the minimum distance is decreased and the marimistance is
increased by’ ™!, which denotes the maximum possible distance fggro any of its descendants.
Trivially, contributions added in Line 4 (the base caseisfathe ¢ absolute error for each kernel
value and the result follows by the triangle inequality. O
Based on the runtime analysis of the batch nearest neigtiganintime bound oAllKernelSum is
given by the following theorem:

Theorem 4.4. Let R be a reference set of sizZ€ and expansion constanrtz, and letQ be a
query set of siz©(N) and expansion constang. Let the(Q,R) pair have a bounded degree of
bichromaticity. LetK (-) be a monotonically-decreasing smooth non-negative kéunetion that is
concave forz € [0, k] and convex for: € (h, co) for someh > 0. Then, given an error tolerance
the AllKernel Sum subroutine of Algorithm 1 computes an approximatftﬁq) Yq € Q that satisfies
the e absolute error bound in tim@® (V).

Proof. We first boundnax |R;_;|. Note that in Line 9 to Line 13 of thallKernelSum, j <i +1,
and thu2? 4 29+ < 2¢ 4 2¢ = 2i+1_ Similar to the proof for the single-tree case, we define:

RL  ={r€Ri:d(gr)<h-—2""}
R", ={reRi_1:h—2""" <d(q,r) <h+2"}
v ={r€Ri_:d(q,r)>h+2}
suchthat?; ; = R._, UR™, UR* ,, and pairwise disjoint. From here, we can follow the tech-
niques shown for the single-tree case to showithat |R;_; | is constant dependent enTherefore,

the methodology of the runtime analysis of batch nearegtieir gives th@ (V') runtime for batch
approximate kernel summation. O

4.3 Approximations Under Relative Error

We now extend the analysis for absolute error bounds to capproximations under the relative
error criterion given in Definition 4.2.

Single-tree caseFor a query poing, the goal is computé(q) satisfying Definition 4.2. An approx-
imation algorithm for a relative error bound is similar t@ternelSum subroutine of Algorithm 1
except that the definition aR;_; (i.e. the set of reference points that are not pruned at the given
level i) needs to be changed to satisfy the relative error constaifollows:

ef (q)}
N
wheref(q) is the unknown query sum. Hence, #t** = max d(gq,r), and expand the sét;_; to:
re

Riy={reR:K(d(qr)—2")— K(d(qr)+2") >

Ri_1 C{re R:K(d(g,r)—2") — K(d(q,7) +2) > eK(d"*")} )
Note thatd™2* can be trivially upper bounded by™%* < d(q, 7yo0t) + 2PT1 = d™3®% wherep is
the scale of the root of the reference cover tree in the dkpéipresentation.

Theorem 4.5. Let the conditions of Thm. 4.2 hold. Then, Keenel Sum subroutine of Algorithm 1

with Line 5 redefined as Eqn. 1 computes the kernel summﬁ(i@)ﬁat a queryq with ¢ relative
error in O(log N) time.



Proof. A noder € C;_, can be pruned by the above pruning rule since-fat L(r), K (d(q,7) +
24 < K(d(q,r")) < K(d(g,7)—2%) and|K (d(q,7)) — K(d(gq,7"))| < eK (d™*%). This amounts
to limiting the error per each kernel evaluation to be less#7( (d™***) (which also holds true
for each contribution computed exactly fore R_.., and by the triangle inequality the kernel
approximate sunj(¢) will be within e N K (d™e%%) < ¢ f(q) of the true kernel sunfi(¢). Since the
relative error is an instance of the absolute error, therdlgo also runs irD(log N). O

Dual-tree case.In this case, for each query poiptc 9, an approximatiorf(q) is to be computed
as per Definition 4.2. As in the absolute error case, we mutfga more difficult condition.
Therefore d™*** is larger, taking into account both the maximum possibléadise from the root
of the query tree to its descendants and the maximum poshgtéance from the root of the reference
tree to its descendants. HenBg_; is defined as follows:

Ry ={reR:K(d(qr)—2" -2 — K(d(g,r) + 2"+ 27T1) > eK(d™""*)}  (2)
whered(qroot; Troot) + 2P + 2PR+1L — gmazu andpg, pr are the scales of the roots of the
qguery and reference cover trees respectively in the expéipresentations. The correctness of the
algorithm follows naturally from Theorems 4.4 and 4.5.

Corollary 4.1. Let the conditions of Thm. 4.4 hold. Then, given an error @aluthe AllKernel-
Sum subroutine of Algorithm 1 with Line 11 redefined as Eq. 2 caepan approximate kernel
summationf (q) V¢ € Q that satisfies an relative error bound with a runtime bound 6f(V).

Note that for the single-tree and dual-tree algorithms uttae relative error criterion, the pruning
rules that generat®; _; shown above are sub-optimal in practice, because theyreeguéry pair-
wise kernel value that is pruned to be witkimelative error. There is a more sophisticated way of
accelerating this using an alternative method [9, 10, 14f ipreferable in practice.

4.4 N-body Simulation

N-body potential summation is an instance of the kernel sutimmaroblem that arises in com-
putational physics and chemistry. These computations heseCbulombic kerneK (d) = 1/d,
which describes gravitational and electrostatic intéoast This kernel is infinite at zero distance
and has no inflection point.€. it is convex ford € (0, c0)). Nevertheless, it is possible to obtain
the runtime behavior using the results shown in the prevemetions. The single query problem
f(@) = X, gz is considered first under the assumption that, e g d(¢,7) > 0.

Corollary 4.2. Given a reference s&® of size N and expansion constanf an error valuee and
the kernelK(d) = 1/d(q,r), the KernelSum subroutine of Algorithm 1 computes the potential
summation at a query with e error in O(log N) time.

Proof. Letd™™" = %in;é d(g,r). Let K¢(d) be theC? continuous construction [15] such that:
reR,q#r

: 3 2 4 min
Keld) = {w%(ls,—mrfm) 3 () ) <
é,ddem

The effective kernekK . (d) can be constructed i@ (log V) time using the single-tree algorithm for
nearest neighbor described in Beygelzimer et.al., 2006 \bte that the second derivative of the
effective kernel isK”/ (d) = Q(d;j")?, + Q(d?,‘fn)s for d < d™". Thus it is concave fod < ?dmm
and convex otherwise, so the second derivative agreés-ati™*". Note thatK(d) agrees with
K(d) for d > d™"™. Hence, by considering™" equivalent to the bandwidthin Theorem 4.2 and
applying the same theorem on ternelSum subroutine of Algorithm 1 with the aforementioned
kernel, we prove th®(log N) runtime bound. O

The runtime analysis for the batch case of the algorithnovadl naturally.

Corollary 4.3. Given a reference s& of sizeN and expansion constanf and a query se® of
sizeO(N) and expansion constanp, with a bounded degree of bichromaticity for th@, R) pair,
an error valuee and the kernelK'(d) = 1/d(q,r), the AllKernelSum subroutine of Algorithm 1
approximates the potential summatidn € Q up toe error with a runtime bound 0O (N).
Proof. The same effective kernel as Corollary 4.2 is used, exceptithi” = Hélél I7rzlin¢ d(q,r).

q reR,q#r
The result follows from applying Theorem 4.4, and noting theaning the dual-tree computation
with K (d(q,7)) = 1/d(q,r) is equivalent to running the algorithm witki. (d(q, r)). O
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5 Conclusions

Extensive work has attempted to reduce the quadratic goafithe all-query problems in statistical
machine learning. So far, the improvements in runtimes loalye been empirical with no rigorous
runtime bounds [2, 8, 9, 16, 17]. Previous work has providgdrghms with rough linear runtime

arguments for certain instances of these problems [13, |5,bl? these results only apply to the
monochromatic case. In this paper, we extend the existirg {60 1, 18, 19] to provide algorithms

for two important instances of the all-query problem (namadl-nearest-neighbor and all-kernel-
summation) and obtain for the first time a linear runtime wbfom dual-tree algorithms for the more
general bichromatic case of the all-query problems.

These results provide an answer to the long-standing questithe level of improvement possible
over the quadratic scaling of the all-query problems. Tlrtgues used here finally point the way
to analyzing a host of other tree-based algorithms used thima learning, including those that
involve n-tuples, such as the-point correlation (which riaely requireO(N™) computations).
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